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SUMMARY

In a cooperative effort with the U.S. manufacturers of large transport aircraft,

4_" NASA has conducted an extensive program to provide a systematic study of well-known

conventional and advanced-technology airfoil design concepts over a wide range of

f Reynolds numbers. This airfoil program, referred to as the Advanced Technology

Airfoil Test (ATAT) program, was conducted in the 8- by 24-inch two-dimensional test

section of the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT).

P The results presented in this report are from a NASA/U.S. industry airfoil

investigation conducted as a part of the ATAT program. The industry participant for

I this investigation was the Douglas Aircraft Company, and the airfoil tested was their

_ DLBA 032. Test temperature was varied from 227 K (409°R) to i00 K (180°R) at pres-

sures ranging from about 159 kPa (1.57 arm) to about 514 kPa (5.07 arm). Mach number

was varied from 0.50 to 0.78. These variables provided a Reynolds number range
(based on airfoil model chord) from 6.0 x 106 to 30.0 x 106 . The tests were con-

ducted with and without sidewall-boundary-layer removal, and removal rates varied

from 1 to 2 percent of the test-section mass flow. This investigation was specifi-

cally designed to (i) test a Douglas airfoil from moderately low to flight-equivalent

Reynolds numbers; and (2) systematically evaluate the effects of sidewall boundary

interference by using the sidewall-boundary-layer removal system.
!

All the objectives of the investigation were met. The aerodynamic results are

presented as integrated force and moment coefficients. These data show the expected

changes in the airfoil characteristics with increasing Mach number, such as increased

normal-force slope, increased drag force, and increased nose-down pitching moment.

The data also show that increasing Reynolds number results in increased normal force,

increased nose-down pitching moment, and, generally, decreased drag force. Addi-

tional data are included which show the effects of fixing transition and sidewall-

boundary-layer removal. Model design, model structural integrity, and the overall

test experience are discussed.

< INTRODUCTION

Research on advanced-technology airfoils has been stimulated in recent years by

_ the interest in developing energy-efficient transport aircraft for the subsonic

_'_ flight regime. In support of this airfoil research, the National Aeronautics and

[_- Space Administration (NASA) has recently completed an extensive program to provide a

" systematic study of both conventional and advanced-technology airfoil concepts over a

wide range of Reynolds numbers. This airfoil testing program, described in refer-

._. ence i, is referred to as the Advanced Technology Airfoil Tests (ATAT). References 2

._ through 27 report some of the results obtained from other investigations during the
ATAT program.

Much of the advanced-airfoil testing portion of the ATAT program has been

carried out in cooperation with the U.S. aircraft industry. Three of the major U.S.

manufacturers of large commercial transport aircraft (Boeing (ref. 5), Lockheed

(ref. i0) and Douglas) have participated in the advanced-airfoil phase of the pro-_.,
gram by providing technical personnel, airfoil design concepts, and airfoil models.

The overall objectives of the ATAT program are (I) to provide the industry
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participants with the opportunity to test and compare their advanced airfoils with

the latest NASA designs at high Reynolds numbers in the same facility; (2) to provide

industry with experience in cryogenic wind-tunnel model design, construction, and

testing techniques; (3) to expand the high Reynolds number airfoil data base; and

(4) to provide each participant with the opportunity to evaluate their current level
of airfoil technology.

The results presented in this report are from an investigation of a Douglas

Aircraft Company (Douglas) advanced-technology airfoil conducted as part of the ATAT

program. The model was designed and fabricated by Douglas, and some details of the

model design, fabrication techniques, and operational experience are included herein.

, The tests were conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m

TCT) with a two-dimensional 8- by 24-inch test section installed. A description of

the design and operating characteristics of the facility are given in reference 28.

Test total temperature was varied from 227 K (409°R) to i00 K (180°R) at pressures

ranging from about 159 kPa (1.57 atm) to 514 kPa (5.07 atm). Mach number was varied

from 0.50 to 0.78. The tests were conducted at Reynolds numbers (based on chord) of
_ 6 x 106 , 15 × 106 , and 30 × 106 . Sidewall-boundary-layer removal ranged from 1.0 to

2.0 percent of the test-section mass flow. Aerodynamic results are presented as

_ integrated focces and moments. Detailed pressure distributions and airfoil coordi- _
nates are not included in this report. !

The Douglas objectives of the ATAT program were somewhat different from other

ATAT participants, because they already had experience in the testing of transonic

airfoils at cryogenic conditions in the Douglas transonic, blowdown One-Foot (I-CWT)

Cryogenic Wind Tunnel. (See ref. 29.) Also, they already had a good high Reynolds i

number data base on the airfoil selected for this ATAT program from extensive test- ._,
ing, with and without sidewall-boundary-layer removal, in the National Aeronautical

Establishment (NAE) facility in Ottawa, Canada. Consequently, the Douglas ATAT pro-

gram focused on evaluating sidewall-boundary-layer effects on transonic airfoil per-

formance characteristics through a systematic variation of sidewall-boundary-layer

removal. An interesting aspect to consider in the evaluation of sidewall-boundary-

layer effects is that in the NAE facility the sidewall boundary layer is removed from

around the model through a porous plate and turntable. (See ref. 30.) In the 0.3-m

TCT, however, the sidewall boundary layer is removed from a porous plate upstream of
the model. (See ref. ii.) Therefore, the results from the 0.3-m TCT have also been 1

used to establish a data base to compare with the data base obtained for the same

airfoil configuration in the NAE facility for the two different methods of sidewall-

boundary-layer removal.

SYMBOLS

r_ The measurements are presented in the International System of Units (SI)withthe U.S. Customary Units in parentheses when needed for clarity.

._' BL boundary layer

b airfoil model span, 20.32 cm (8.0 in.)

c airfoil model chord, 15.24 cm (6.0 in.)

_i_ cd section drag-force coefficient from wake measurements
_i_.,

2 L"
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cm section pitching-moment coefficient about model quarter-chord point

cn section normal-force coefficient from airfoil pressures

M free-stream Mach number (downstream of perforated sidewall plates)

eP _ mean value of Mach number for a given angle-of-attack polar (a polar is

defined as an angle-of-attack sweep for nominally constant M, R,

_" and _bl )

m mbl sidewall-boundary-layer removal, percent of test-section mass-flow rate

R Reynolds number based on airfoil chord

x chordwise distance from leading edge of model (positive measured aft),

cm (in.)
J
I y spanwise distance from centerline of tunnel and model (positive measured

toward right-hand side), cm (in.)

_i _ uncorrected angle of attack (positive measured from tunnel centerline up :....
- to airfoil reference line), deg

_ q standard deviation from mean value of Mach number

_m maximum deviation from mean value of Mach number

,!i

WIND TUNNEL AND MODEL

Wind Tunnel

The tests of the Douglas Aircraft Company DLBA 032 airfoil were made in the

8- by 24-inch two-dimensional test section of the 0.3-Meter Transonic Cryogenic

[ Tunnel (TCT). Figure l(a) is a photograph of the tunnel, and figure l(b) is a

i schematic of the tunnel. The passive system of boundary-layer removal is described
in reference 3. A photograph of a typical test section setup with boundary-layer

removal is shown in figure 2(a). In this photograph, the plenum lid and test-section

ceiling have been removed to show the model installation. For the tests presented in

._ this paper, the boundary-layer rakes shown in figure 2(a) were not installed. A
side-view schematic of the test section is shown in figure 2(b), including the tr&-

_ versing survey probe which holds the momentum rake. This tunnel is a continuous-

_ flow, fan-driven, transonic tunnel which uses nitrogen gas as the test medium. Forthis test, 5-percent open-slotted walls were installed on the floor and ceiling to

reduce model blockage. The tunnel is capable of operating at stagnation temperatures

from about 80 K (144°R) to about 327 K (589°R) and stagnation pressures from slightly

_._ greater than 101.3 kPa (i atm) to 607.8 kPa (6 at/n). Test-section Mach number can be
4_

varied from about 0.2 to 0.85. The ability to operate at cryogenic temperatures and

/J 607.8 kPa (6 atm) pressure provides an extremely high Reynolds number capability at

relatively low model loadings.

The two-dimensional test section contains computer-driven angle-of-attack and

momentum-rake systems. The angle-of-attack system is capable of varying the angle

i_ of attack over a range of about 40". The momentum rake, located just downstream of

the airfoil (see fig. 2(b)), provides up to five total-pressure measurements across

I i i III [III I I
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half the width of the tunnel. These pressures are converted to drag levels and pro-

: vide a mechanism for determining the extent of two-dimensionality in the flow. The

momentum-rake system is designed to traverse automatically through the wake, deter- !

_ mine the boundaries of the wake, and then step through the wake at a selected rate

and number of steps. Both the angle-of-attack and momentum-rake systems have a

manual override capability. Additional design features and characteristics regarding

the cryogenic-tunnel concept, in general, and the 0.3-m TCT, in particular, are pre-

sented in references 28 and 31 through 33.

W Model ,

The airfoil model used in this test was a 12.28-percent-thick supercritical air-

foil with a chord of 15.24 cm (6.0 in.). The model was designed and fabricated by

Douglas in accordance with NASA aerodynamic and structural requirements for the ATAT

program models. Aerodynamic tolerances as specified by the ATAT program were gen-

erally satisfied with airfoil contour accuracies of +0.00254 cm (0.0010 in.), a /

surface finish of 1.016 × 10-4 mm (4.0 × 10-6 in.) root mean square, and closely
L

spaced chordwise distribution static-pressure orifices. The structural requirements
6

were satisfied for the specified model chord and span dimensions. A material was

: selected that was cryogenically acceptable, with safety factors of at least 3 at all _,
operating conditions and Charpy impact strengths greater than 93.55 J (69.00 ft-lbf).

T 'b

Instrumentation in the airfoil model included 76 static-pressure orifices dis-

tributed in 3 chordwise rows near the midspan, 15 spanwise pressures distributed in

3 spanwise rows (see table i), and 19 thermocouples (see table 2) distributed l

t_hroughout the airfoil. The thermocouples were used to ensure that model tempera- ¢,|
tures had stabilized prior to taking data. Figure 3 is a schematic which indicates

the locations of the orifices and thermocouples. A photograph of the Douglas model ,_
installed in the sidewall inserts of the 0.3-m TCT test section is shown in figure 4. : _

Model fabrication.- The model was fabricated at Douglas from Armco Nitronic 40

stainless steel, a cryogenically acceptable material. Two-piece construction was

used with the split line of the two halves beginning at a point approximately '

5 percent aft of the leading edge on the lower surface and bisecting the trailing

edge. The contouring was performed in stages to allow for material stabilization

and to reduce the possibility of model distortion. A wire EDM (electrical discharge

machining) process was utilized because of the excellent accuracies provided b_, this

method. Thermal cycling of the model in liquid nitrogen and surface inspection prior

to and following rough EDM machining was performed. Instrumentation grooves and

• trenches for the pressures and thermocouples were then EDM machined in the separated ,
:I

pieces. Figure 5 is a photograph of the inside surfaces of the model at this stage _i

._ of construction. The next steps were to temporarily bolt the halves together withthe 3M Company EC-2216 B/A adhesive used to bond the trailing-edge section of the

_" model. The final airfoil contour was EDM machined to 0.00254 om (0.001 in.) and

hand polished to the required finish. The model parts were again separated, holes

_. for the pressure orifices were drilled, and the instrumentation was installed.

_ Pressure tubing, with a 0.0787-cm (0.0031-in.) outside diameter, was located inside
the trenches and glued in place with Dexter Corporation Hysol 9309, a cryogenically

• acceptable epoxy. In the final assembly, the two halves were bolted together using
Loctite Corp. Locklite 262 (RED) on the threads, and EC-2216 B/A adhesive was used

to bond the trailing-edge joint. The exposed bolt holes on the lower surface were [_

• filled with a mixture of Hysol 9309 and type S-100 carbospheres (100-_m diameter

_ carbon powder purchased from Versar Manufacturing, Inc.).



Model stress analysis.- The Douglas stress analysis used a conservative loading
distribution based on a maximum model normal force of 6672 N (1500 ibf). Stress

calculations in the various critical regions were performed for ambient-temperature

model conditions (conservative) and accounted for stress concentration factors using

Nitronic 40 material properties. Classical structural analysis methods were used,

which resulted in safety factors of three or greater. Consideration was also given

to the cryoqenic effects on the shear pins and mechanical fasteners used in the

.4 assembly of the model. Results indicated satisfactory compliance with safety factors
for the temperature range to be tested. The decambering effect of trailing-edge

m movement under load was calculated to be 0.00762 cm (0.0030 in.); therefore, exten-

sive aeroelastic studies during the wind-tunnel test were considered unnecessary.

Model accuracy and integrity.- Contour inspection of the model was performed

with a Zeiss coordinate measuring machine. The contour was generally within the

specified tolerance near the centerline of the model, with the exception of two

extreme points which measured within 0.00508 cm (0.0020 in.) and -0.00381 cm
(-0.0015 in.) of the nominal airfoil contour. Seven spanwise inspection stations

were chosen with 33 chcrdwise locations inspected on each of the upper and lower

surfaces. The locations of the pressure orifices, with diameters of 0.0432 cm

(0.017 in.), were also found using the Zeiss machine. The surface finish was mea- i_ _,
sured with a profilcmeter as 1.016 x 10-4 mm (4.0 x 10-6 in.) root mean square.

Prior to installation in the tunnel, the model was "cryocycled" three times from

ambient to cryogenic temperatures and back at a rate similar to actual operating con-

ditions in the 0.3-m TCT. The thermocouple located midspan at the leading edge was

used to determine model temperature equilibrium during the test. The "cryocycling"

did not alter the shape of the model and indicated that the model was acceptable for

cryogenic testing.

TEST APPARATUS AND PROCEDURES

i Test Instrumentation and
Apparatus

i A detailed discussion of the instrumentation and procedures selected for the

calibration and control of the 0.3-m TCT can be found in reference 28. For two-

dimensional airfoil tests, the 0.3-m TCT is equipped to measure static pressures on

_i the airfoil model surface, total pressures in the model wake, and static pressures on
_._!the test-section sidewalls, floor, and ceiling. The pressures are measured with

individual transducers, except for the tunnel floor and ceiling pressures, which are

measured with a scanning valve system. Because of the large changes in the pressure

of the tunnel over its operational range, commercially available, high-precision,

variable-capacitance pressure transducers are used instead of conventional strain-

gauge pressure transducers. For airfoil model tests, the data are derived fromi (i) the pressure distributions around the airfoil model, (2) the definition of the

!._ wake defect, and (3) the corresponding angle of attack.
Airfoil model pressures.- The pressures on the airfoil model are measured by

._ individual trmssducers connected to tubing from each orifice on the model. The

!_ pressure transducers are located adjacent to the test secticn in order to reduce

response time. To provide increased accuracy, the transducers are mounted on thermo-

statically controlled heater bases to maintain a constant temperature and on "shock" i

!_ reduce vibration effects. The electrical outputs from the trans-
mounts to possible
ducers are connected to individual signal conditioners located in the tunnel control
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I room. The signal conditioners have autoranging capability and have seven ranges

available. As a result of the autoranging capability, the analog electrical output

to the data acquisition system is kept at a high level, even though the pressure

i transducer may be operating at the low end of its range. The maximum range of these

!_ differential transducers is about ±689 kPa (±6.8 at/n) with an accuracy of ±0.25 per-

IIL_ cent of _e reading from -25 percent to i00 percent full scale.
_w

Wake pressures.- A vertically traversing survey mechanism is located on the

ie_ left sidewall of the two-dimensional test section downstream of the turntables. The
primary purpose of this mechanism is to move a total-pressure probe rake through

i the airfoil wake to survey the total pressures within the wake. Details of this

survey rake are shown in figure 6. The survey mechanism has a maximum traversing

range of 25.4 cm (10 in.), 17.78 cm (7.0 in.) above the tunnel centerline and

7.62 cm (3.0 in.) below the centerline. The rake support can be located with the

measurement plane of the rake either at tunnel station 21.0 cm (8.3 in.) or at

26.0 cm (10.2 in.). For this test, the wake survey measurements were made at the

26.0-cm (10.2-in.) station, which placed the measurement plane about 1.2 chord

lengths downstream of the airfoil trailing edge. The survey mechanism is driven by

an electric stepper motor and is designed to operate at speeds from about 0.25 cm/sec

(0.i in./sec) to about 15 cm/sec (6 in./sec). The stroke (that portlon of the '

total traversing range used in a given survey) and speed of the survey mechanism _''

can be controlled from the operator's panel in the control room to suit the research

i! requirements. The vertical position of the rake i_ recorded using the output from
a digital shaft encoder geared to the survey mechanism. The active total-pressure

probes are located on the survey rake at five spanwise stations: y(b/2) = 0.0,

-0.125, -0.375, -0.500, and -0.750. Nine tunnel sidewall static-pressure taps are

also provided in the measurement plane of the rake. Data from the static taps are

used in the determination of the momentum loss, which is used to calculate airfoil

drag coefficient, based on the method outlined in reference 34. More sensitive

individual differential pressure transducers, with a maximum range of ±137.8 kPa

(±1.36 at/n) (of the variable capacitance type described previously), are used on

each tube on the survey rake and for each of the sidewall taps.

An_le of attack.- The angle-of-attack mechanism has a traversing range of ±20 °,

which can be offset from 0° in either direction at model installation. The mechanism _ I
is driven by an electric stepper motoz, which is connected through a yoke to the

perimeter of both turntables. This arrangement drives both ends of the model through

the angle-of-attack range to eliminate possible model twisting. The angular position

of the turntables and, therefore, the angle of attack of the model are recorded using

the output from a digital shaft encoder geared to one of the turntables.

Sidewall-boundary-layer removal.- A passive boundary-layer removal system (see

figs. I, 2, and 7) was operated with the discharge from each sidewall exhausted

directly to the atmo_.phere. In the passive mode of operation, the test-section

static pressure must be at least 15 percent higher than the ambient pressure, and

the maximum rate of mass that can be removed is limited to the rate of liquid nitro-

gen that is being injected into the tunnel in order to maintain a steady operating

condition. The perforated plates (figs. 2(a) and 7) that are used to remove the

sidewall boundary layer are fitted flush on both sidewalls and are located upstream

of the model. The plates currently in use have a nominal porosity of about 10 per-

cent. The holes are electron-beem drilled and have a nominal diameter of 0.275 mm

(0.011 in.) and spacing of 0.75 mm (0.030 in.). The surfaces of the perforated

plates are etched and polished to obtain a smooth surface. This surface preparation

and fabrication technique ensured that there was no appreciable thickening of the

boundary layer over the perforated plate compared with boundary-layer growth over

6
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the more frequently used solid plates. Precise control of the rate of sidewall-

boundary-layer re_oval by the passive system (see figs. 1, 2, and 7) is possible with

the two digital valves and their associated controls. Each of the two digital valves

(fig. 7 (b)) consists of a number of different sized calibrated binary sonic nozzles

operating in either an open or closed mode. The sonic nozzles are used in appropri-

ate combinations to give the required flow rate. The 11-bit digital valves have a

resolution of 0.05 percent and are microprocessor controlled. The microprocessor

maintains a constant mass removal through the perforated plates at a level specified

by command set points. Each of the digital valves can be driven to a command set

point by a feedback control loop which sets the mass flow in terms of either actual

rate of flow or percent of the test-sectlon mass flow. The tunnel total pressure,

static pressure, and total temperature are p_t into the microprocessor to determine

the test-section mass-flow rate. The mass-flow rate through the digital valves is

determined by the microprocessor from an input of the inlet total pressure and tem-

perature from each of the two digital valves. The pressure at the junction of the

two discharge lines from the dlgital valves is also input to the microprocessor to

make sure that there is an adequate pressure drop (at least 15 percent) across the ,d
digital valve to have sonic flow through the nozzle element.

i
i

Test Program _ _ i

The nominal test conditions used in this investigation are summarized in table 3 !

"_ in terms of Mach number, Reynolds number, percent sidewall-boundary-layer removal,

and free or fixed transition. The Mach number and Reynolds number for these testa f

were selected from a limited Maoh number, Reynolds number calibration at various I

levels of sidewall-boundary-layer removal. The calibration procedure with sidewall-

boundary-layer removal is described in reference 16. The level of the sidewall _*i

removal for this investigation was selected at either 1.0 percent of the test-section !

mass-flow rate or at the maximum mass-flow rate available for the given test condi- j
tion. The extent of the effort to establish the effects of Mach number, Reynolds !

number, sidewall-boundary-layer removal, and transition (fixed and free) can be seen
from table 3.

Test Procedures

Pressure data.- For the results reported herein, airfoil static-pressure data

were taken in i second while the drag rake was in its first position. During the
' 1 second, pressures from individual transducers for each orifice on the model were

sampled 20 times and averaged to obtain the airfoil pressures. Also, 20 samples of

total-pressure (wake-rake) data were taken and averaged at the first rake position.

For each succeeding rake position (v_rtical), the procedure for the rake data was

repeated. When the wake rake was stepped to a new position, a 0.5-second delay was

followed by the 1-second averaging period. Typically, for each angle of attack at

each test condition, the rake was stepped in 75 increments through the wake. To pro-

vide an optimum definition of the model wake, the vertical stroke of the rake (the*_" distance traversed to define the wake) and number of steps within the stroke can be •

-_ changed for each test condition, such as angle of attack or Mach number. For this

test, the number of steps within the stroke was held constant at 75. However, thestroke was changed as required to survey the entire wake. I

_.[ Transition.- Transition strips were attached to the upper and lower surfaceo
L_ during1 portion of the test program to evaluate their effect on the aero- "¶
_4

dynamic characteristics of the model. The transition strips were sized for a chord |

4

L/ i
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_ds "_number of 6 x 106 but were small enough to be used for a Reynolds number of
15 x 106. The strips consisted of 0.041-m (0.0016-in.) diameter glass microbeads
placed in a 3.175-mm (0.125-in.) wide strip located along the 5-percent chord line.

Bonding of the glass beads to the model surface was accomplished with a clear acrylic
spray adhesive, which was applied before and after the placement of the beads.

DATA REDUCTION AND QUALITY

0.3-m TCT Data Acquisition System

For the present study, data were recorded on magnetic tape with s computer-
controlled hlgh-speed digital data acquisition system located in the control roan oJ:

the 0.3-m TCT. This system has a total of 192 analog channels with five selectable

ranges from 8.191 mV to 131 mV and a resolutlon of 1 part in 8191. All analog data
were filtered with a 10-Hz low-pass filter. An operating and acquisition program is

used by the computer to scan the data acquisition hardware and to write the raw data i
on tape.

Through the use of a separate "real-time" program, visual displays of Mach num- /
bar, Reynolds number, stagnation pressure, and other flow and tunnel parameters are
provided on LED readouts on the tunnel control panel and on a color CRT. This real-

, time program provides many on-line data reduction functions, such _s correcting Mach
number for real-gas effects and tunnel calibration and calculating the local pressure

ratios and pressure coefficients, which are then integrated around the alrfoil to

determine values of cn and cm. Values of cd are computed on-line by integrating
the total head loss through the model wake. Local pressure coefficients, local

pressure ratios, local Mach numbers, total head loss through the model wake, and

model aerodynamic coefficients (Cn, Cd, and cm) can be displayed graphically on an
intelligent graphics terminal interfaced with the computer. This information can

then be sent to a plotter/printer which produces hard copies.

Data Reduution

As mentioned in the preceding section, Mach number is corrected for real-gas
effects and tunnel calibration. Real-gas effects are included in the data reduction

process using the thermodynamic properties of nitrogen gas calculated from the
Beattie-Bridgeman equation of state. This equation of state has been shown in ref-

erence 35 to give essentially the same thermodynamic properties and flow calculation

results, in the temperature-pressure regime of the 0.3-m TCT, as are given by the

more complicated Jacobsen equation of state. Detailed discussions of real-gas
effects when testing in cryogenic nitrogen are contained in references 36 and 37.

The test Mach number is based on the average longitudinal Mach number distributions

measured as a function of Reynolds number during the calibration of the "empty" test
sectlon.

_ormal-force and pitching-_ent coefficients are calculated from numerical
integrations of the pressures around the surface of the model. Drag coefficient is
obtained from the wake survey pressures by computing an Incrmntal or point drag

coefficient using the method of reference 34. These point drag coefflclente are

then integrated across the model wake to obtain the drag coefficient. A typlcal

survey plot of the wake-rake measurements displays the incr_ntal drag as a function
of survey width. (See fig. 3 in ref. 38.) Generally, the base levels of these
curves do not coincide with the zero axis! therefore, a correction sethod is _ed to

1988014350-01(
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account for this zero shift. This method generates corrected drag coefficients

referred to as CDCORI to CLCOR5 in reference 38. The corrected drag coefficients

are used in the discussions of spanwise drag data in this report. For a given test

condition, the corrected drag coefficient obtained from the tunnel centerline tube

(y/(b/2) - 0) is assumed to be the drag coefficient for the airfoil at that condi-
tion. The results from the data reduction process are presented in table 4.

Data Quality

Mach number fluctuations.- In transonic wind-tunnel testing, the ability to main-

tain a constant Mach number as well as constant tunnel stagnation conditions has

direct bearing on the quality of the final aerodynamic data• With individual pressur_

transducers on each of the model pressure orifices, and with all the model data being

recorded in i second at the first rake step, Mach number fluctuations in the model

data are virtually nonexistent. However, the possibility of some Mach number fluctua-

tions during the time required for the 75 steps of the wake survey does exist. The /

Mach numbers and Reynolds numbers presented in table 4 are tabulated with increasing

Reynolds number and increasing Mach number. All values of Mach number and Reynolds

number were averaged from the 75 steps through the wake survey. To statisticelly

determine the variation of Mach number, the mean, standard deviation, and maximum • i.

deviation of the Mach number are presented in table 4 for each polar (i.e., angle-of-

attack sweep _t a constant nominal Mach number, Reynolds number, and sidewall removal
condition)• The nominal test conditions are given in table 3. In general, the mean

value of Mach number (for a polar) was within ±0.002 or less of the nominal Mach num-

ber, and the s_andard deviation of Mach number for a given polar was about 0.002. In

only a few instances did the maximum deviation go as high as ±0.005; it was generally
on the ord_ of ±0.002. _!

Re_eatabilit_ of data.- Two examples illustrating the ability to repeat the Mach
number, normal-force, pitching-moment, and axial-force coefficients at a nominal Mach

number of 0.730 and Reynolds number of 15 x 106 are shown in figures 8 and 9. In

general, the repeatability of data is good for cn and cm for all angles of attack.

For these conditions, the repeatability of cd is good up to a cn of about 0.7;

however, above this value of Cn, the cd is not as repeatable. The repeatability
of the Mach number is as expected, based on typical tabular data of Mach number from

puevious tests. (See ref. 5.)

PRESENTATION OF RESULTS

The experimental data are presented with no corrections for wall interference

effects due to the top and bottom slotted walls or to the sidewalls. A correction

procedure that can be used to account for wall interference is described in refer-
ence 23 and includes some typical corrected results from other tests in the 0.3-m TCT.

An outline of the plotted aerodynam1 -oefficient data presented herein is given

below, along with the applicable figure references• The variation of Mach number is

also presented in the figures that show the effect of free and fixed transition,

Reynolds number, and sidewall-boundary-layer removal and is included to aid in

assessing these effects on the basic aerodynamic characteristics of the airfoil.

Caution should be used in placing much significance on the results at a high normal-

force coefficient, where separation may be present on the model at the shock wave

and possibly near the trailing edge. This separation may result in a deteriorationof _e two-dimensionality of the flow. In addition, at these conditions, the effects

of tunnel sldewall-boundary-layer separation may be present • i

9
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DISCUSSION

Assessment of Two-Dimensionality of Flow

The wake survey rake shown in figure 6 is equipped with several spanwise total-

pressure probes which enable an assessment of the airfoil model drag levels across

the tunnel and provide an indication of the two-dimensionality of the flow over the

model. All these data are shown in figures i0 through 23. In these figures, the

zero value for y/(b/2) is the centerline of the test section. The plots have been

arranged to illustrate the effects of Mach number, Reynolds number, sidewall-

boundary-layer removal, and transition (free or fixed) on the spanwise drag levels

for various normal-force coefficients. Figures i0 through 12 show the effects of

Mach number on the drag levels at three Reynolds numbers, all with no sidewall-

boundary-layer removal and free transition. Figure I0 (R - 6.0 x 106 ) indicates a
nonuniform distribution for all levels of normal-force coefficient for Mach numbers

greater than 0.6. At Reynolds number of 15.0 x 106 and 30.0 x 106 (figs. ii and 12),
the flow retains a two-dimensional character longer as the normal force and Mach

number increase.

Figures 13 through 19 show the effects of Reynolds number on the spanwise drag ' .... ,

levels for Mach numbers from 0.50 to 0.78 with no sidewall-boundary-layer removal. _ ..

For the Mach numbers tested, the effects on the spanwise drag levels due to an

increase in Reynolds number from 15.0 x 106 to 30.0 x 106 are not significant.

However, there is noticeable improvement of the drag levels and trends when the

Reynolds number increased from 6.0 x 106 to 15.0 x 106 , especially at the lower i
values of normal-force coefficient.

Figures 20 and 21 show the effects of sidewall-boundary-layer removal on the

drag levels for Reynolds numbers of 15.0 × 106 and 30.0 x i06, respectively, with
free transition. In general, the boundary-layer removal did not affect the spanwise

drag levels or trends except at the highest normal-force coefficients.

Figures 22 and 23 show the effects ,.f fixing transition (free and fixed) on

the drag levels with no sidewall-boundary-layer removal. In genera], figure 22

(R - 6.0 x 106 ) shows that fixing the transition resulted in a more uniform spanwise

drag distribution for normal-force coefficient_ below about 0.80. Figure 23

(R = 15.0 x 106 ) shows that fixing the transition had no effect on the two-

dimensionality of the data except at the highest normal-force coefficient.

Effect of Fixing Transition

The effect of fixing transition with no sidewall-boundary-layer removal was

examined over a Mach number range from 0.600 to 0.780 at a Reynolds number of

6.0 × l06 (figs. 246through 29) and at Mach numbers of 0.730 and 0.765 at a Reynolds
number of 15.0 × i0 (figs. 30 and 31). At a Mach number of 0.600 and R = 6.0 x 106

(fig. 24), there is very little difference between the fixed- and free-transition

normal force and pitching moment; however, the drag is somewhat higher for the free

transition. These differences become more pronounced at the lower angle of attack

as Mach number increases (figs. 25 through 29). In addition, there is an increase

in the normal force and nose-down pitching moment for the free-transition data at

all angles of attack. The reason for this behavior is not obvious from the data

¶

presented in the report. At a Reynolds number of 15.0 x i06, there is very little _

difference in drag. This slight difference indicates that the boundary layer is

turbulent close to the leading edge of the airfoil. _U
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Effect of Reynolds Number, Mach Number, and Sidewall-Boundary-Layer

Removal on Basic Aerodynamic Characteristics

Figures 32 through 46 show the effects of Reynolds number (for each test Mach

number and sidewall removal rate) on the basic aerodynamic characteristics of the

airfoil. These results for free transition (figs. 32 through 44) exhibit a slight

increase in both the normal force and nose-down pitching moment with increasing

Reynolds number. The results for fixed transition (figs. 45 and 46) indicate a some-

what larger increase in normal force and nose-down pitching moment than was observed

for the free-transition data for an increase in Reynolds number from 6.0 × 106 to

15.0 × 106. The longitudinal stability parameter (dcm/dcn) appears to be relatively

insensitive to changes in Reynolds number. Increasing Reynolds number generally

reduced the l_vel of drag with the exception of some of the data at high lift condi-

tions at higher Mach numbers.

In figures 47 through 56, the data have been plotted to show the effect of Mach /

number (at a given Reynolds number and sidewall removal rate) on the basic aerody-

namic characteristic of the model. The data presented are representative of the _.

trends seen in the normal force and pitching moment at all Reynolds numbers. The .... i
data indicate the usual increase in normal-force slope and nose-down pitching moment .... '

with increasing Mach number. In addition, it can be seen that stall occurs at pro- ,.

gressively lower angles of attack for the two highest Mach numbers. For Mach num-

bers above 0.700, the slopes of the normal-force and pitching-moment curves become
somewhat nonlinear above normal-force coefficients between 0.5 and 0.7. As the Mach f

number increases, there is a progressive increase in drag, and the greatest increase

occurs at the higher Mach numbers associated with expected drag-rise effects. A

comparison of figures 47 and 53 indicates _at the increase in normal-force slope and _|

nose--down pitching moment with increasing Mach number (R - 6.0 x 106 ) is less with [
fixed transition than with free transition.

Figures 57 through 70 are representative of the effects of sidewall-boundary-

layer removal (at a given Mach number and Reynolds number) seen on the aerodynamic

data. The sidewall boundary layer was removed at a minimum level of 1.0 percent of

the test-section mass flow. The higher levels of removal that were used for some , _j
conditions were the maximum sidewall removal that could be obtained at the particular

Mach number and Reynolds number using the passive mode of removal. At a Mach number

of 0.60, the normal force, pitching moment, and drag indicated virtually no effect of

sidewall removal. At Mach numbers above 0.60, the effect of sidewall removal was to

slightly decrease the normal force and slightly decrease the nose-down pitching

moment above a normal-force coefficient of about 0.60. For Mach numbers above 0.730,

the sidewall removal, in general, increases the drag level. !

Figure 71 summarizes effects of Reynolds number and transition fixing on the

variation of drag with Mach number for normal-force coefficients of 0.60, 0.70,

and 0.80. In general, the results show the expected decrease in drag coefficient

with increasing Reynolds number and the characteristic drag rise at the highest Mach

number, particularly at normal-force coefficients of 0.70 and 0.80. The increase in

drag coefficient which occurs between low Mach numbers and the drag rise is referred

to as "drag creep." The drag creep is a complex phenomenon which is highly dependent

on the boundary layer and its impact on the resulting aerodynamic shape of the air-

foil. (See ref. 39.) The data for the two highest normal forces in figure 71 show
an increased drag creep with decreasing Reynolds number above a Mach number of 0.70.

An examination of pressure distributions indicates that this increase in drag at the

low Reynolds numbers is a result of the reduced aft loading, which results in a i
stronger shock required for a fixed normal force. In addition, as the normal force
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increases, the drag creep also increases and extends to higher Mach numbers. There

is no discernible trend or effect of fixing transition at a Reynolds number of

15.0 x 106 , where the flow is turbulent very close to the leading edge. However, at

a Reynolds number of 6.0 x 106 , fixing transition results in an increase in the rate

of drag creep prior to drag divergence. This increase in drag creep could be the

result of the elimination of aft-moving transition location with increasing Mach

number. Without a means for determining the location of transition on the upper and

lower surfaces of the airfoil, a precise cause for the increase in drag creep cannot

be established.

A summary of the effects of sidewall-boundary-layer removal on the variation of

drag with Mach number for three normal-force coefficients are illustrated in fig-

ure 72. The results in figure 72(a) at a Reynolds number of 6.0 × 106 are incon-

clusive. However, at Reynolds numbers of 15.0 x 106 and 30.0 x 106 (figs. 72(b)

and 72(c)), particularly at the lower normal-force coefficient where sidewall-

boundary-layer separation is not a factor, the drag level (above the drag-rise Mach

number) obtained without sidewall removal is more favorable than those obtained with

removal. This is an indication of the increase in the effective (i.e., uncorrected)

Mach number when sidewall-boundary-layer removal is not used. This trend is not as

clear at the higher normal-force coefficients because of possible sidewall-boundary- !//T_
layer separation coincident with separation at the shock on the model (based on ,

model pressure data) and perhaps even near the airfoil trailing edge.

Model Assessment
l

Model accuracies and surface finish are major considerations for the high _
Reynolds number conditions available in the cryogenic pressure wind tunnel. There-

fore, a thorough assessment of the accuracy of the model contours and a quantitative

definition of the model surface finish, both before and after the tests, are con-

sidered to be essential parts of the research program. The model performed well

throughout the test, and no structural problems were encountered with the load-

carrying components of the model. A post-test examination of the model indicated no

change in the local hand-finished surface of the Hysol-carbon mixture used to fill

each of the numerous lower-surface bolt and pin holes. A post-test Zeiss coordinate

inspection of the model planform and contour revealed no deviations in shape as a

_ result of repeated cryogenic cycling. The de_ely oriented static-pressure orifices
_i< and surface thermocouples worked without failure throughout the test, except for

those orifices which were identified as being questionable prior to the beginning of

the test. The glass-bead transition strip also performed adequately during the last

phase of testing (i.e., fixed transition), although a post-test inspection revealed

that portions of the strip had worn off. In general, the design and fabrication
techniques used for this model were more than adequate for models being tested in a

_-! cryogenic environment.

!j/ CONCLUDING REMARKS!
f

A wind-tunnel investigation, which represents the final NASA/U.S. industry two-
dimensional airfoil study in the Advanced Technology Airfoil Tests (ATAT) program,

has been conducted in the Langley 0.3-Meter Transonic Cyrogenic Tunnel. Integrated

forces and moments are presented; however, pressure distributions are not presented. _

i_._ investigation was designed a Douglas advanced-technology airfoil.
This to test

14
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Douglas objectives in the program were somewhat different from other ATAT partici-

pants, since they had experience in testing transonic airfoils at cryogenic condi-

tions in the pilot cryogenic wind tunnel at Douglas. In addition, they already had a

high Reynolds number data base on this airfoil from extensive testing with sidewall

L boundary layer at the National Aeronautical Establishment (NAE) in Canada. There-fore, the Douglas ATAT program focused on evaluating sidewall-boundary-layer effects

L. n the airfoil performance characteristics by systematically varying Mach number,Reynolds number, and sidewall-boundary-layer removal.

All the objectives of this cooperative test were met. Limited analysis of the

data indicated the following general conclusions:

1. Increasing Reynolds number generally increased normal force and nose-down

pitching moment and, in general, decreased drag force. Drag creep, for Mach numbers

greater than 0.7 at the two highest normal forces, increased as the Reynolds number

decreased. /

2. Increasing Mach number indicated the expected results, such as increased _

normal-force slope, increased nose-down pitching moment, and increased drag force. L

3. The boundary-layer transition strips appeared to adequately trip the flow at -:

a Reynolds number of 6.0 × 106 • However, for the lower normal forces, the drag force '"

for free transition was greater than for fixed transition. At a Reynolds number

of 15.0 x 106 the free- and fixed-transition drag levels were virtually the same. I

4. The spanwise measurement of drag in the wake of the airfoil indicated that
two-dimensional flow was obtained at the higher Reynolds numbers. For the high- _I

angle-of-attack postseparation conditions, _,e spanwise distributions become less f
two-dimensional.

5. A limited amount of data (at M - 0.730 and R - 15.0 x 106 ) indicated that

the repeatability of these data is good except for the drag above a normal force of !

about 0.70. .

removal resulted in a slight decrease in the ,_6. The sidewall-boundary-layer

normal force and nose-down pitching moment. The drag-rise characteristics obtained

without sidewall-boundary-layer removal are more favorable than those with removal,

indicating an increase in the effective (i.e., uncorrected) Mach number when no

sidewall boundary layer is used.

7. In general, the design and fabrication techniques used for this model were _

more than adequate for models being tested in a cryogenic environment. The model was

structurally sound and remained dimensionally stable through repeated cryogenic

cycling.

NASA Langley Research Center

Hampton, VA 23665-5225

L February 13, 1986
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TABLE i.- MODEL ORIFICE I/DCATIONS
¢

,_ Upper surface Upper surface
Orifice x/c y/(b/2) Addltlonolspanwiseorifices

I o.o00 0.o00 ONce x/c y/(b/2)
2 .002 -.O63

• 3 .005 -.031 1 .060 -.750

4 .010 .063 2 / -.500
P 5 .020 -.063 3 _ .5006 .030 0.000 4 .750
I_ 7 .050 .083 5 .300 -.750

8 .075 -.063 6 -.500
t 9 .100 0.000 7 -.225

10 .125 .063 8 .500
_. 11 .150 -.063

9 0750t

12 .180 0.000 10 .610 -.750

i 13 .210 .063 11 -,50014 .240 -.063 12 -.250
_ 15 .270 0.000 13 .250
. 16 .300 .063 14 .500

17 .320 -.063 15 '_, .750
18 .340 0.000
19 .360 .063
20 .380 -.063
21 .390 0.000 Lower surface
22 .400 .063
23 .410 -.063 Orifice x/c y/(b/2)
24 .420 0.000 .......
25 .430 .063 1 0.000 0.000
26 .440 -.063 2 .005 -.063
27 .460 .063 3 .010 0.000
28 .470 -.063 4 .025 .063
29 .480 0.000 5 .050 -.063
30 .490 .063 6 .075 0.000

: 31 .510 0.000 7 .1O0 .063
32 .520 .063 8 .I 50 -.063

P 33 .540 -.063 9 .200 0.000
34 .560 0.000 10 .250 .063
35 .580 .063 11 .300 -.063
36 .610 -.063 12 .350 0.000
37 .640 0.000 13 .400 .063

38 .670 .063 14 .450 -.063
39 .700 -.063 15 .500 0.000

_ 40 .730 0.000 16 .550 .063
. 41 .76 .063 17 .600 -.063
_ 42 .790 -.063 18 .650 0.000

• 43 .820 0.000 19 .700 .083
44 .650 .063 20 .750 -.063

_' 45 .880 -.063 21 .800 0.000
_ 46 .910 -.021 22 .850 .063

47 .940 .042 23 .B80 -.063
. 48 .970 -.042 24 .910 ,021

49 1.000 0.000 25 .940 .083
26 .970 -.083

• 27 1.000 0.000
9 --

i,

Ib -": - - ..... - •

" .......... 1988014350-021



TABLE 2.- MODEL THERMOCOUPLE LOCATIONS

!

Upper surface Lower surfoce
Thermocouple x/c y/(b/2) Thermocouple x/c y/(b/2)

1 0.00 -324 1 .10 0.000 ..... '

2 .031 2 .20 -.040

3 .375 3 .40 0.000
/

4 ,l .824 4 .60 0.000

5 .10 -.040
t

6 .20 0.000
t

7 .40 -.824

8 -.375

9 0.000

10 .375 I

11 ,, .824

12 .60 0.000

13 .80 -.824

14 .040

15 ,, .824

20

........................."-......"-°'- ---....... ""'-"°"'-_----------_......._-- i 988014350-022
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TABLE 3.- TEST CONDITIONS

,m

_unl M !R x 10-6 _ bl l'ransiti°nl Run IV R x 10-6 ;_bl Transition
I

10 I 50 6 0 Free 29 .75 6 0 Free

2s I I is / 5,36 = is I
1 wI 30 w _L 9 I, 30 q_

11 .6C 6 0 ' Free ,7,38 , 15 1
2,12 I 30

23 I 15 39 I 15 1.52 ! 30 _,
58 _ 6 0 Fixed

24 15 1 .: -_
3 30 _ 30 .76E 6 O. Free .'

! 40 15 ,

26 L 15 1.1
50 _ 6 0 Fixed 4,1 .= 30 w41 15 1

27 .7(l 6 0 Free 16 30 _, ..,
20 15 42 . 15 1.6 ,

4,5 30 w 57 6 0 Fixed

21 15 1 49 15 ,i, I

6 30 _v 56 6 1

22 15 1.5 55 '_ 6 2 '
51 6 0 Fixed 31 .78 6 0 Free
28 .713 6 0 Free

43 15
32 15 17 30 w
7 30 _,

44 15 1
33 15 1

8 30 $ _8,_, 30 $
45 15 1.6

34 15 1.5 59 v 6 0 Fixed
52 6 0 Fixed
48 _s ¢
53 6 = 1I

54 _, 6 2
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(a) Free transition

Point M R x 10 -6 mbl C! Cn Cm Cd

Run 10 J_ = .500 o" = .001 O"m = .002

93 ._99 5.996 0.00 -2.00 .128 -olZZ .00886
9, .501 6.033 0.00 000 .35Z -..'126 .00867
q_ .500 b.01b 0.00 1.00 .46Z -,1_.7 ,00863
96 .500 6.029 0.00 2.01 0576 -,1Z0 .00864
97 .500 60027 0,00 2o51 o631 -.IZ_ ,00880

.i
96 .*99 6.021 0.00 3002 .687 -.128 000892 _ " '
99 .501 6.039 0.00 3.51 0744 "o129 000901 ....

100 .5_2 6.056 0.00 3.99 .799 -.1Z9 .00918
101 .500 5.994 0.00 S.O0 .907 ".126 .00961
103 .501 5.990 0.00 6.OZ 1.001 -o120 .011%1

Run 11 M = .600 O" = .000 o"m -.: -.001
.JI,

104 o600 5.959 0.00 -1.98 .120 -o130 .00955
105 .601 5,968 0000 .01 0369 -,133 *009Z$
lub .601 5.968 O*O& 1.07. .49Z -.135 .00903
107 .600 5.968 0.00 Z*OZ .610 -.155 000907 :
108 .601 5.971 0.00 2o51 ,668 -*l]S *00919
109 .600 5,967 0.00 3o02 ,733 -,155 *0095Z
110 .601 5,976 0000 3,51 ,793 -,133 000961
111 .bOO 5.971 O,OC 4,01 08_0 -o130 ,01018
112 .600 5.971 0000 5.02 .956 -.124) .01356
113 .600 5.9?3 0*00 6*03 1.091 ".119 .02175



TABLE 4.- Continued

(a) Continued

Point M R x 10 -6 r_bl O! c n c m c d

u

Run 28 M - .731 o" = .001 o" = .002m /

Z62 0731 6*OZe 0.00 -,99 ,263 -.148 ,01091
263 0731 6,036 O,OG ",51 *335 -o150 001051 1
264 0732 60039 0000 000 0406 "*15Z *01019 ' ,
265 0730 6003Z 0.00 ,SO .474 0,151 ,00994
Z66 073Z 60036 0.00 l,O0 .544 00151 ,00976 ....
Z67 .733 60030 0000 1.51 .6Z5 ",151 ,00980
268 ,730 6.014 0,0© Z*OZ .703 ".150 *01047
269 0731 60024 0,00 2051 .785 ",149 *01315 f
270 0732 60016 0.00 3,03 .908 "*197 *01782 |
Z?l 0731 6001'i 0000 3,5Z ,996 0,163 ,02459

Run 29 M - .750 O" = .001 O'm = .002 ' ,
J

273 0751 5.983 0,00 -Z,O0 ,107 0,146 ,O127q
274 0752 50980 d,GO 0059 *Z60 -*149 *01140
2?5 0750 5,972 0,00 001 .410 *.152 ,01045
Z?6 0750 50969 0,00 ,52 *480 -o154 *01011
277 0751 5.970 0.00 l*OZ ,57Z -.156 ,02004
Z78 0749 50q64 0,00 1.51 0651 0.155 001050
279 *749 50966 0000 Z,OZ ,751 ".150 ,01146
Z8O 0749 5.957 0.00 Z*OZ ,750 -,150 *01139
281 ,751 50970 0000 Z,SZ 0060 -,160 ,01445
282 0750 5096R 0000 3003 .947 -.180 *01954
283 0750 5*97_ O,GO 3,5Z 1,015 0o104 oOZg07

ii

Run 30 M - .765 o" = .001 O" m - .002

Z84 .766 6.001 OoO0 -1,_ ,103 ",140 *01337
Z85 0765 60000 U,O0 ",90 ,|67 ",153 ,01107
Z86 0766 60008 0,00 *01 0423 o,157 ,01084
Z07 o766 6,00g 0,00 ,52 *SO1 0,160 ,01064
208 0765 60006 0.00 1.01 ,59_ **160 ,01060
Z09 0765 6.00l 0000 205Z ,686 -,169 001111
zgo 0765 60006 0000 Z,02 0700 -0174 001441
251 ,763 6,001 0,00 2,53 ,IT? -,105 ,O_gZ5
zgz ,764 60005 0,00 3*OZ ,537 ",lq)O *0Z030
293 0766 6*011 0.00 3040 09|8 -,1|9 004337
Z94 0765 6,010 0,00 3051 ,547 -0108 004426 4
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TABLE 4.- Continued

(a) Continued

Point M R x 10 -6 mbl G Cn Cm Cd

Run 31 M - .781 _ = .001 _ = .003

Z95 .781 6.007 0.00 -Z.O0 ,099 -,193 .01398
Zg6 .782 6,015 0,00 -,98 ,ZTZ -,159 eOIZ?3
297 0701 6,010 0,00 o01 ,439 ",164 *01161
290 .781 6*020 0,00 ,51 *SZ? "o167 00113t _ +
299 ,780 6*01Z 0.00 1,01 ,6Z0 ",174 ,01244 +./
300 ,702 6.0Z3 0.00 1,50 ,701 -,leZ ,01733 "
301 e784 6,031 0,00 2,0Z ,75_ -,116 ,0Z676
302 .782 6,0Z0 O,OO 2,54 ,812 -.186 ,03564
303 ,701 6.018 0.00 ?,99 ,040 -,105 ,04zZo
304 .781 6,016 0,00 3,51 ,8S0 ",179 *0S696

Run 25 M - .500 _ = .001 _m = -.002 .,.l
;

228 .500 15,0_1 0*00 -2*03 ,135 -,125 .00822
229 .500 15,025 G*O0 -1,9'_ ,14_ "*126 ,OGI3S
230 ,499 14,960 0,00 00;_ ,369 oo128 ,00?96 :
231 ._01 14,966 0.00 1.0;_ ,48Z -o130 ,00T87
232 ,502 150002 0000 2,01 ,592 0,130 ,OGO0$
23k 050Z 14,94_ O,O0 Zo53 ,650 -e130 000816 ;.

235 ._02 1_,956 0,00 3*01 *702 -,131 *O0$ZZ . I236 .498 14.870 0.00 3.51 .756 -,131 ,00837
237 .499 1_,893 O,U0 **01 ,813 -,131 .00852
Z38 .500 14.932 O*OO 4,99 ,923 -,129 *00903
239 .bOO 14,915 0.00 6,0_ 1,022 -*121 *01092

Run 23 M - .601 _ = .001 _m = .001

204 ,602 14.928 0.00 -2,01 ,137 -,13_ ,00835
205 .601 14,924 0.00 ,C1 .$76 -,136 ,00818
206 ,601 14,919 0*00 1,01 ,497 -*13? *00017
207 ,600 14,879 0000 2003 *6ZZ "o131 *OOlZ|
208 .601 14,913 0,00 2*53 *686 ",138 *00|42
209 *602 14.9Z7 0*00 $*OZ *746 "*138 ,OOe$|
Z10 .601 _,909 0,00 3,53 ,810 ",137 *00175
211 ,601 14*912 C,O0 4*02 *OS8 -o134 *00946
ZlZ *600 14,884 6*00 S,01 .910 ",lie *01|16
21_ *600 14,895 0,00 6,03 1,104 -,120 ,01167 +

+ i

...................................
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TABLE 4.- Continued

_" (a) Continued

p . x m bl a c n c m c d

p

Run 24. M = .599 o" = .001 o" m = -.003t /

217 0598 140794 loOO -lo98 0144 -=133 000834 L
;'18 0601 14.845 1.00 000 0302 -,136 000831 i
Zlq 0600 1_0827 1,00 1,01 0507 -o138 000827

", |
Z20 .600 140822 lo00 2,02 0628 -o138 *00834
221 .601 140842 1000 Z053 .689 -o138 000841
22Z 0600 140834 1000 3.02 .747 -o136 ,00855 !
223 ,600 140824 1,00 3051 0811 -,137 000879
2Z* 0509 14,806 100(, 400 :) 0861 -,134 000948
225 .597 14,750 1.00 4099 .970 -*128 001275
;)26 0599 1_,798 1000 60(_2 1.104 ",12Z ,07.126

Run 26 M = .601 O" = .001 O"m = -.002 _
J

242 o600 140816 1010 -2000 ,].41 -,].32 I 000817

Z43 .600 140826 101C *02 .394 -0136 I 00080?

244 ,601 140846 1010 I*OZ o519 -,138 ,00808
245 ,001 140839 1.10 2,0Z .635 -o138 000821

Zd;6 .602 140866 1.10 Z053 ,696 -,138 .00835
Z47 0602 14086? lo10 3002 0755 -o136 ,00853 .

i Z4_ .602 14.857 1010 3.53 0817 -o134 000879 ;
249 ,bU1 140895 1.10 4001 0866 -o134 000959

250 *bO1 140_92 1010 5001 0981 ",126 I 001329
_51 ,_09 14.827 1.10 6.04 1,098 -,120 I *02142

Run 20 M = .700 o" = .001 0" = ,002
_ m

_>, 171 .701 140937 0.00 -1,01 0264 -,144 .00861
_ 172 0700 14,911 0000 -0©1 0400 -.146 *00850
• 173 0700 14091?. 0000 051 ,470 -,148 000855

174 0699 140897 0000 1001 0539 -,148 000860

: 175 ,700 14,909 0000 1.52 ,607 -,148 *00866
--I 176 0701 14,923 0000 Z*03 0684 -.148 *00884
_ 177 .?00 14.925 0000 Z,50 0759 -,146 ,00971

17_ 0701 14.910 0000 3.05 ,840 -,144 ,01222
: 179 .701 14.919 0000 3005 ,839 -.143 *01213

1_0 0700 140905 0000 4.03 lo01]. -,144 ,0Z269
181 .70Z 140948 0,00 5,04 1,177 ".155 *04432

I m
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TABLE 4.- Continued

(a) Continued

Point M R x 10 -6 mbl Q Cn Cm Cd

Run 21 M = .701 O" = .001 O"m = --.001

183 .700 14.813 1.00 -1,00 .269 -,146 *00879
184 ,702 14_858 lo00 -001 0414 ".149 ,00869
185 ,701 14.84§ 1.00 ,49 .477 -,148 .00866
18_ ,701 14.B47 1.00 1.01 .543 ".149 *00873
187 .700 14.827 1,00 1.52 .611 -*148 *00877
188 ,702 14,860 1,00 2,03 ,683 -.148 ,00902
1_Q ,700 14.830 lo00 2.93 ,?54 -*145 *00968
190 .699 14,826 1.00 3.01 ,827 -,143 ,01117 ,?:i.. _,
191 ,700 14,847 1,00 4.00 1,001 "*144 ,02036 :
192 ,701 14,849 1,00 5.01 1.160 -.151 *03892

Run 22 M = .700 o'= .001 O"m = -.002

194 ,b99 14,816 1,50 -,99 ,267 -.145 ,00863
195 .702 14,890 1.50 ,01 ,406 ",148 ,00861
196 ,701 14,834 1.50 ,52 ,475 ",148 .00860
197 .700 14.81b 1,50 1.01 .540 -,148 .00866
198 .700 14o831 1,SG 1,_0 ,609 -,148 .00868
199 ,701 14.e43 lo50 2,02 ,679 -o147 .00eeq
20_ .701 14,845 1,SO Z*51 ,750 -,146 ,00955
201 ,b99 14,815 1,50 3.0_ ,824 ".142 *01120
202 ,698 14,801 1,50 4,0} .995 -,142 ,01910
203 ,699 14.814 1.50 5.G3 1.160 -,149 ,03567

Run 32 U = .730 o" = .002 o" = .002

305 .733 14,997 0,00 -,94 ,260 ",149 ,00895
30b .732 14,967 O*OC -,51 0327 -0148 ,00890
307 ,730 14,922 0,00 ,01 ,405 -*151 ,00083

308 ,731 14.912 0,00 ,54 .484 -.152 ,00881
309 .730 14.860 0.0_ 1,04 ,557 -.152 ,00092
310 ,72B 14.835 0,00 1,52 ,632 ".152 ,00908
311 ,730 14,e88 0,00 2*04 ,718 -,151 .00991
313 .732 14.913 0,00 2*52 ,810 ",153 ,01227
314 ,729 14.B83 0,00 3,03 .900 -,155 ,01650
315 .728 14,875 0,00 3,53 ,995 "0163 *02293

Run 46 M = .732 (3"= .001 (3"m = -.001

'r4_ ,732 14,924 0,00 ,01 ,410 -,151 ,00587
44b ,73U 14.930 0,00 1,OZ ,555 -,152 ,00887
447 .733 14,971 0,C0 2,96 ,895 ",157 ,01586
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TABLE 4.- Continued

(a) Continued

Point M R x 10 -6 rnbl (2 Cn Cm Cd

Run 33 M = .729 o" = .001 o" m ,-- .002

310 .7Z8 1'. 89;' 1.00 -1.00 .Z66 -.146 .00885 :'
317 .730 14.919 1.00 -.51 .336 -.148 .00878
318 .730 ltt. 908 1.00 .01 .408 -.149 .00877
310 .730 14.911 1.00 .SZ .484 -.150 .008?9
3;'0 .730 14.911 1.0_ 1.01 .551 -.150 .00118 _ r. i
321 .7Z9 14.886 1.00 1.51 .617 -.149 .00889 "
32Z .728 14.891 1.00 Z.02 .694 -.148 oO09ZZ
3Z3 .7Z8 14. 890 1.00 Z. 51 .772 -.146 .0105 6
324 .731 14.931 1.00 3.01 .865 -.149 .014Z9

325 .731 I 14.940 1.00 3.53 .960 -.154 .01969

Run 34 M = 730 O" = .002 (7"m = -.005 ,,_.l

327 .731 14.840 1.50 -1.01 .266 -.149 .O09ZO
328 .730 14.837 1.50 -.48 ,345 -.151 .00903
329 .731 14.841 1.50 .OZ .415 -.152 .00903
330 .730 14.829 1._0 .SZ .483 -.15Z .00901
331 .T32 14.860 1.56 1.01 .559 ".153 .00908
332 .731 14.842 1._0 1.50 .631 -.152 .00911
333 .?30 14.836 1.50 2.OZ .700 -.151 .OOga,O
._34 .7Z8 14.820 1.50 2.53 .790 -.150 001095 _
335 .731 14.800 1.50 3.02 .88_ -o154 001360
336 .724 14.736 1.50 3.51 .g64 -.155 .01954

Run 35 ond Run 36 M = .751 o" = .001 O"m = -.001

337 .7_Z 15.014 0.00 -Z.CO .11Z -.146 .00948
338 .751 15.009 0.00 -.99 .Zb4 -.150 .0091g
330 .751 1_.012 0.00 .OZ .4t6 -.154 .00904
340 .751 15.016 0.00 .SZ .49Z -.155 .00908
341 .751 15.015 0.00 1.01 .$74 ".1_7 .00913
34Z .7_1 l_.OZO 0,00 1.51 .661 -.158 .00949
343 .750 14.998 0.00 2.00 .75_ -.160 .01064
344 .751 15.004 O.OG Z,54 .861 ".169 .01438
345 .75Z 15.005 0.00 3.02 .947 -.181 .01972
34H .7_0 14.930 0.0_ 3._Z 1.014 -.184 .0Z880

,t

/" .!
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TABLE 4.- Continued

(a) Continued

. |

Point M R x 10-6 mbl _ Cn Cm Cd

Run 37 and Run 38 M = .750 o'= .002 O'm = .005

349 0749 140761 1000 -Z,O_ ,101 -0147 000977

351 ,750 240767 1000 -098 026? -,152 000946
354 0751 140783 2000 001 0417 -,156 000936 _ _,
356 ,752 140787 1000 053 0497 -o157 000936 ;
357 0752 140785 lo00 1,02 0570 -o157 000934
358 o751 14079Z 100C lo51 ,654 -o157 .00960
35Q ,748 140747 1.00 Z,O0 0735 -o158 ,01024
360 .747 1_0745 lo00 Z053 0832 -o162 001255
361 0749 140774 2000 3003 0928 -o173 001777
362 0755 140839 lo00 3,53 0962 "o184 002821

, i i i u i

,d

Run 39 M = .750 O" = .001 O"m = .002

365 .750 140775 1050 -1o99 ,103 -0146 ,00973
366 0749 14,752 1,50 -lo00 *Z§? "o151 *00938
367 ,750 14.76Z lo90 o01 0413 -o155 000922
36_ ,TSO 1_0772 1050 .50 0489 -o156 ,00926
369 .751 14.779 2050 1,00 ,566 -0156 000930
370 .751 14,779 lo50 1052 0652 -0157 .00952
_71 0750 14.765 1.50 2o01 0733 -,158 001028
373 ,749 14,768 lo50 Z,51 0833 -o164 001Z70
37* ,750 140779 lo50 3.00 .913 -.170 *01701
375 0752 14.802 1.50 30_3 0978 -,281 ,02474

m

Rut 40 M = .766 O" = .001 O"m = .002

376 0764 14,949 0000 -Z,OZ o100 -.148 .0098Z
3?8 .768 14.990 0000 "098 .262 -.153 .0094?
379 ,765 140963 0,00 *OZ .4Z4 -.150 .009Z7
380 °?64 140945 0*00 0S1 0500 -0159 ,00929
38! 0765 140961 O,GO 1,00 0587 -,161 ,00951
3_2 ,767 14.985 0000 1,50 .?03 -.171 ,01094
3_3 0767 14,998 0000 2,03 ,?$3 -,178 ,01490
384 ,768 140998 0000 2092 .857 -.184 002086
38_ 0765 14,968 0000 3.03 *922 -.187 ,02739
386 0767 140987 0000 3*5Z .915 -,180 ,0]760

................1988014350 030
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TABLE 4.- Continued

(a) Continued

Point M R x 10 -6 •mbl (2 Cn Cm c d

Run 41 M = .765 O"= .002 Crm = -.003
4

387 ,762 14,786 1,00 -2,00 *ogs "*149 .00995
388 .766 140831 1.00 -.98 .Z6Z -.155 000961 /
389 .706 14.836 1000 001 o421 -o159 000952
3gc' 0768 14,860 1,00 *53 *505 -o161 000957
391 .765 14.834 1.00 1003 .566 -,161 *00961
39Z .763 14.805 1.00 1.50 .67Z -.165 .01006 .... tl
3c)3 .765 i%*844 1,00 Z*03 =76g -,175 ,01180 .'_._ .
394 .765 14.esz 1,00 2,53 .832 -,182 ,01790
39_ .763 14.8zg 1.0C 3,03 ,912 -,104 ,02354 : ,

396 .767 140869 lo00 3051 0931 -,18:P o03%%1
i

f

Run 42 M = .764 (7"= .002 O"m = .005
+j,t

3q7 o763 14o7%6 1060 -Z.O0 o095 -o148 .00964 t+
398 .769 140813 1.60 -*g8 0257 °,154 000965 *
39g ,762 14,731 lo6(; ,01 o416 -,157 *oog3z }
401 .762 14.757 1.60 ,01 ,423 -,157 *00935 *
402 .764 14.764 1*60 .52 *500 -.160 .oog3g !
46,3 .765 14.788 1.60 1.03 *583 -.161 .009%6

404 .763 14.759 1.60 1.52 .66q -016Z 000986 ._05 ,761 140744 1060 2001 0751 "o167 *01157
4C6 .763 14.760 1,60 2,53 ,836 -.176 *01582 +
408 .767 14.798 1,60 3,01 ,909 -,18Z ,OZZSe
4(;9 o766 14.798 1060 3053 ,801 -o175 002983

Run 43 U = .781 O"= .001 Crm = .002

410 .781 14.943 0.00 "2*00 *093 -.151 001065
%11 781 14.g41 0.0C -.g8 *266 ".157 .00994
41;_ .TJqO 14.938 0,00 *03 ,433 -,163 ,00967
413 ,780 14.9_4 0,00 ,53 ,525 -,167 ,009g? ;"
414 .?_1 1_,967 0,00 1,03 ,6Z1 -,175 ,01194
41_ .780 1%o937 0*00 1052 ,6gT -,leZ ,01575

416 0782 140958 0.00 2.00 .763 -o186 *02273
417 ,782 14.955 0,00 2,5% *1101 -.184 *O:Pq5II I+
%lJq ,783 1%.970 0.00 3.01 .834 -.103 *03%97
419 .783 14.963 0.00 3.51 *833 "*17% *0%805 1,

d29
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TABLE 4.- Continued

(a) Continued
i ,.

Point M R x 10-6 r_bl (2 Cn Cm Cd

Run 44 _ = .780 o" = .002 O"m = -.004

421 0776 14.897 1,00 -2000 0082 -.150 ,0108Z
422 ,778 14,911 1000 -,97 ,260 -,158 ,02005 !
423 .779 14,905 1,00 ,01 ,427 -,163 ,00986 '
426 ,779 24,843 1000 ,50 ,510 -*167 ,00993
427 ,780 14.808 1,00 1*01 .593 -,170 ,01181
426 ,760 14,812 1,00 1052 ,681 -,177 001502
429 0780 14.616 1,00 2002 0745 -0283 001965 .......
430 ,781 14.836 1.00 Z,53 .806 -o185 002716 '';" **'
431 .763 140855 1000 3,01 0804 -*178 003274 "
432 o762 14,848 1,00 3053 ,826 -o173 004299

Run 45 M = .781 O" = .002 O"m = .004

433 ,779 14,803 1060 -2000 ,078 -,150 001170 ..4
434 .780 14,808 1,60 -,_8 ,254 -o158 ,01032
435 .782 14,810 1.60 ,02 ,425 -,166 ,01032
436 .781 14,801 1,60 ,52 o512 -,170 ,01067
437 ,780 140792 1060 1,00 0596 -,173 ,01243
438 ,780 140789 1,60 1,51 ,679 -,177 ,01531
440 .781 140795 1.60 2.02 .750 -.184 001985
441 .762 14,703 lo60 2,53 0753 "*180 *02552
442 .784 t4,733 1.60 3*00 0813 ",179 ,03149
443 0765 14,740 1,60 3,52 ,841 ",175 ,0425q

Run 1 M = .500 O" = .001 O"m = .002

1 0501 290944 0,00 "1,99 ,143 -,128 *00741
2 ,500 290802 0,00 003 0372 -,131 *00737
3 .502 300003 0*00 1001 ,489 -.132 .00731
4 ,502 29.952 0,00 2,03 0603 ",133 ,00742
5 .499 29.910 0,00 2*53 *655 "*133 *00749
6 ,500 Z9,970 0,00 3o02 0712 -o134 *00764
7 .500 290990 0.00 3.Sl .765 -.133 *00776

• 500 300015 0.00 4.03 ,8Z4 Oo133 ,00802
9 ,501 300023 0.00 4.99 ,931 -,131 000848

10 ,500 29,q00 0,0_ 6,02 1,028 -0124 001062

30

1988014350-032



TABLE 4.- Continued

(a) Continued

Point M R x 10-6 r_bl a Cn Cm Cd

i

Run 2 M' = .600 o" = .001 O"m = -.002

11 ,600 29,839 0,00 -1,99" ,155 -, 1'37 ,00728 /
12 .6G1 29.857 0,00 *02 ,394 ",139 ,00733
13 ,601 29.891 0,00 .99 ,513 -,141 ,00740
14 .601 29,858 0000 2o02 ,635 -*141 *00753
16 *b01 290848 0,00 2,!11 0699 -.141 *00766
17 .599 29,723 0,00 3.02 ,754 "*140 *00775 .*_'
18 .599 29,818 0,00 3.49 .818 -.139 ,00(101
19 .601 29.915 0,00 4,01 ,876 -,237 .00683
20 .601 29.916 0.00 5.04 ,993 -,130 ,01294
21 .601 _.9.935 0.00 6.00 1,116 -,123 ,02150

Run 3 M = .596 o" = .000 o"m = -.001 ,,,
| i

23 .596 29.713 ,90 "1.95 .151 -.136 *00749
24 ,597 29,729 ,90 ,02 .400 -,139 ,00735
25 ,597 29.720 .90 ] *01 ,521 -*140 *00747
26 *596 29,691 .90 2.00 ,638 -*240 *00760
27 0597 29.712 .90 2051 ,698 -o140 000770
28 .596 29.703 .90 3,03 ,761 -,140 ,00783
29 .596 29.712 .90 3,51 .819 -,139 ,00813
30 .596 29.708 .90 4,01 ,866 -,136 ,00876
31 ,597 29.708 .90 5.02 ,989 -,129 ,02240
32 .597 29,720 .90 b.O0 1,104 -,122 ,02021

..... | ,,

Run 4. and Run 5 I_ = .701 O" = .000 O"m = .000
l,

33 ,701 Z9*973 0*00 -,99 ,28_ -* 1_t0 *00758
34 .701 29*972 0.00 ,02 ,419 -,152 ,00741
3.5 .7l)1 29,944 0,00 ,52 .484 -. 1_2 .00744
36 .701 29*976 0,00 1,02 ,550 -*152 *00778
37 ,701 29,983 0,0¢_ 1,54 ,630 -,153 ,007118
38 .701 29,99b 0,00 2,00 ,691 ",152 *00810
39 .701 29,912 O*OO 2*52 ,760 -,149 ,00925
40 .701 29*908 0,0(_ 3.10 ,864 -,148 ,01166
41 .701 29*914 0.00 3*99 1,026 -,149 002234
42 .701 29,911 0,00 4*98 ].*11_7 -*156 00416_l
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TABLE 4.- Continued

(a) Continued

Point M R x 10-6 mbl Q Cn Cm Cd

-
Run 6 M = .700 0" = .001 o-m = -.004

44 .701 Z9.646 1.00 -.98 .294 I -.152 .00772
45 .700 Z9.638 1.00 .01 .4Z5 -.194 *00777
46 .701 29.6_1 1.00 ,54 ,49B -.156 .00755
k7 .701 2g.668 1.00 1*01 .561 -,15% *00771 ' *"
48 .7U1 29.665 1.00 1.50 .63Z -.154 .00793 "*_,.
,o .701 29.661 1.00 Z.O0 .705 -.153 .00818
50 .701 29,671 1.00 2.52 .769 -,150 .00887
51 .7UO 29.666 1.00 3.03 *844 -.148 *01071
52 .702 29.582 1.00 4.01 1.022 -e149 .0207S "
54 0697 29.438 1.00 5.01 1.183 -o155 003695

Run 7 M = 330 o" = .0010"rn = -.002

55 .730 30*09Z 0.00 -,99 ,Zq6 -.156 ,00793
56 .731 30.10g 0.00 -.49 .358 -.156 .00776
57 .731 30.03Z 0.00 .01 .428 -.157 *00791
58 .731 30*023 0.00 .50 ,494 -.157 ,00774
O0 ,732 30.008 0,00 1.00 .572 -.158 *00792
61 .7Z9 2g.954 0.00 1.50 .646 -.157 .00817
63 ,730 29.956 0,00 Z*OZ e733 -,157 *00858
64 .732 30.003 0.00 2.51 .825 -.158 .01100
66 ,728 29.891 0.00 3*02 *918 -.161 *01457
67 .730 29.8_0 0.00 3.49 1.022 -.175 *02155
68 .702 29.856 0000 4099 1,196 -.159 *04339

i

Run 8 M = .730 O"= .001 O"m = .002

69 o729 29.534 1.00 -lo00 ,297 -0157 ,00021
70 .729 29.526 1o00 -.48 .356 -.157 .00830
71 .731 29,61Z 1,00 o01 .43? o,160 ,00007
?Z ,729 29,542 1.00 o51 .504 -,159 ,00798
73 .731 29,586 1,00 1000 o576 -,159 000809
74 .730 29.562 1.00 1.51 .650 ".15| .00829
75 ,729 29,554 1,00 2,01 ,726 -,15? ,00854
76 .718 29.540 1.00 Z.51 .815 -.1S? .01011
77 .729 Z9.568 1.00 3.01 .908 -.161 .01181
78 .731 29.450 1.00 3.51 .998 -.16g *01822

........
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TABLE 4.- Continued

(a) Continued

Point M R x 10 -6 _nbl Cl Cn Cm Cd

Run 9 M = .752 _ = .001 O"m = .002

I_0 ,751 ?.9,976 0,00 -2,00 ,140 -,195 ,00046 :'
81 .753 30.013 0.0_ -1.01 .Z04 -.159 • *0081 8
82 .752 30.016 O*OO .03 *437 -.16Z .00811 L
8_ .75_ Z9.877 0.00 .51 .513 -.163 *00820

05 ,754 .?.9,852 0,00 ,51 ,513 -,162 ,00801 "*' i'
: 86 ,751 Z9,803 0,00 1,00 ,$90 -,163 ,00833 ?.....

87 .750 ?.9,793 0,00 1,50 ,676 -,163 ,00856 + "
": 08 .75G Z9.774 O.OO 1.99 .779 -.168 .01003

89 ,75Z Zg,827 0.00 2.53 .071 -.176 .01429
qO .75Z 29+856 0.00 3.01 *957 ",188 ,0Z063

91 .75Z 27,857 0.00 3.50 1.022 -o192 ,0:'87gim

.._.11

Run 12 ond Run 13 M = .749 or = .002 O"m = -.003
!

115 *74g ;'9.7Z7 1.00 -1.99 .123 -,155 *00843
116 .746 Z9,6_0 1,00 -1,01 ,Z87 -,199 *00843
118 .750 zg.b90 1.00 *00 .444 ".163 *0C015
110 ,750 Z9.702 1.00 .50 ._16 -.163 .008Z3
120 .748 2g,655 1.00 1.00 ,587 -.162 *008Z3

IZ1 .748 Z9.604 1.00 1,5Z ,667 -*16Z *00840 +.
1;:2 .74g Z9.626 1.00 2.03 .753 -.164 *00970 '_
123 ,751 29,805 1,00 2,51 ,851 -,172 ,01:'72
12, .747 290695 1.00 3.02 .Q24 -.173 .01670
125 .750 29.7?.0 1.00 3 • '.sZ l,OOZ -.187 *02476 :_

+. Run 14 and Run 15 M = ,762 O" = ,002 O'm = -,004
•,r.z,

126 .763 29,018 0.00 -1,99 .150 -,159 *0086g
127 .762 _g,784 0,00 -*g9 * _.9;_ -,161 *00836

+ ; 17[_ .76Z _q. 798 U*O0 *02 .440 -.163 *00840
lZg .76Z 30,067 0.00 ,5Z ,523 -,16_) ,00050

: 1:30 .763 30.084 0.00 1.01 .60Z -.166 .0087;_ !
Z*' 13Z .761 29,973 0,00 1,50 .701 -.171 *00953
._ 133 .761 zg*g87 0.00 Z*01 .799 ",181 *01zgz

134 .761 Zg*gl]Z O,O0 Z*SZ ,07Z -,1G8 *01889 ._
13_ .763 30,047 0,00 3,00 *gZl -,194 ,OZ718 _i
136 .758 Zq*QZZ 0000 3.4q .970 -.190 *03274 _.i
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TABLE 4.- Continued

(a) Concluded

Point M R x 10 -6 rhbl a Cn Cm Cd

i

Run 16 M = .763 o" = .002 o"m = -.003

137 .763 290651 1000 -1,99 ,136 -,161 ,00883 /
138 .76' 29.697 1000 -,98 ,289 -,164 ,00855
l*O .765 29.699 1000 ,02 .453 -,168 ,00861
1'1 .763 29.61* 1,00 o51 ,525 -,168 ,00851
1'2 .762 29,589 l,O0 1.01 0608 -,168 ,00876 ..'
1'3 .760 290552 14,00 1,%9 ,,686 ",169 ,00931 _'
1'4 076* 290576 1000 2.02 o772 -o181 001351
145 .765 29.638 lo00 2,52 ,851 -,189 ,01919
146 0764 290557 1.00 3o01 ,917 -,193 L ,0Z460
147 0765 29.510 lo00 3.50 0939 -o187 J 003289

I e

Run 17 M = .780 O" = .001 o" = .002rrt ¢t

1'8 .781 29.918 0,00 -1098 o134 -0162 ,00933
1_9 0783 290965 0000 -lo01 ,282 -o166 000910
150 ,780 29.899 0,00 ",01 ,455 -,171 ,00908
151 .779 290854 0000 050 o541 -o174 ,00926
152 .779 29.89* 0000 1,02 ,634 -.181 001173
153 .780 290920 0.00 1,49 o713 -,189 ,01549
155 0782 290964 0000 20C1 0767 -,193 002328
156 .779 29.930 0000 2o51 o819 -o193 002903
157 o781 29.9?0 0000 3o02 0833 -0180 003464
158 o781 29.9_0 0.00 3,51 0862 -o183 004391

m

Run 18 ond Run 19 U = .780 O" = .002 O"m = -.004

159 .776 290569 1000 -2000 o123 -o162 000954
161 0778 290628 ZoUU -10G0 0288 -o169 000927
lb3 .779 290632 1o00 .GO 045_ -o175 00_95'
16' 07R1 290657 1.00 .50 o541 -,178 001037
165 .779 290666 1.00 1.01 .616 -0181 .01215
166 .779 29o664 1.00 1.53 .702 -0187 e01565
167 0782 29072? 1.00 Z.O3 0768 -o190 .02207
16R 0778 29062* 1.00 _.51 0807 -0190 .02677
169 .782 290721 1.00 3.©8 o021 -0184 003580
170 .781 290706 1o00 3053 .874 -o18, 004100

/

4

/2 *

.......... • . _.: .-_"5 := !"" " ' _Z".L_ . ....... 7 ,ii_- "" -
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TABLE 4.- Continued

(b) Fixed transition

i .L

Point M R x 10-6 mbl Q Cn Cm Cd

Run 50 U = .601 _ = .001 _m = .002
,. ii

47¢ .60Z 6.03Z 0,00 -2,00 ,111 -,124 o00894
480 .60Z b,O03 0,00 ,02 ,359 -,129 ,00848
481 .60Z 0,008 0,00 1,03 ,484 -,231 ,00838
4eZ ,6_0 5,gg5 O,OC Z,O2 ,603 -,131 ,00851 "''
484 .bOO 5.989 0,00 ZeSO ,664 -,131 ,00885
485 .601 5,99b 0.00 3°OZ °T2S -.131 ,00893
486 ,b01 6,000 0,00 3,53 ,783 -,lZ8 ,ooqz?
487 .604 6,018 0.00 4.0Z ,845 -,127 ,00995
48n ,603 6.01Z 0,00 5,01 ,960 ".ZZZ ,01331
48¢ ,_g9 5,989 0,00 0,03 1.074 -,115 ,0Z023

im

Run 51 M = .701 _= .001 _m = -.001

491 .701 5.965 0*00 -,g8 .ZZ9 -,134 .00961
492 ,701 5,965 0.00 .OZ ,369 -,136 ,00928
493 ,700 5,964 0,00 ,SZ .436 -.137 .00918
494 ,701 5.072 0,00 1.0Z ,506 -.138 ,00935
495 ,70Z 5.973 0.00 1,5Z ,575 -,13e ,00941
496 ,70Z 5.979 O.OG Z,03 ,65Z ".139 *00951
497 ,70Z 5,9?8 0,00 Z,SZ ,7Z? -,137 ,01007
4g_ ,70Z _.98_ G,00 3,0Z ,804 -,136 ,01177
49g ,700 _,q71 0,00 4,00 ,9T_ -,137 ,OZOSq
_00 ,7u0 5,967 0,00 5,00 1,131 -,143 ,03755

. • , • =.

Run 52 M = 330 _ = .001
_ _002m

_04 .?Z9 5,9b? 0,00 -1*01 ,ZZ4 ",1_4 _01006
_0_ *731 9*980 0,00 ",48 *300 -*157 *0098g
506 ,731 _,980 0,00 .05 ,37] -.159 ,0_979
507 .730 5.978 0,00 ,53 ,446 -,140 ,00974
SOS *730 5*9BZ 0*00 1*01 .518 ".141 *009TZ
_69 ,731 5*086 0,00 1,52 ,596 -,140 ,00983
510 .730 5*qg6 0o00 Z,03 .679 -.141 *01033
511 ,730 5,993 0,00 Z.52 ,764 ",141 *01219
51Z ,?Z8 5,98T 0,00 3,03 ,86t -,144 ,0154T
513 ,731 6,000 0,00 3,53 ,954 *,151 ,0Z176
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TABLE 4.- Continued

(b) Continued

ii , ....

Point M R x 10 -6 mbi 0 Cn Cm Cd

Run 53 M = .730 _ = .001 _m " .002
/

51_ o731 5,973 1,00 -1,00 o219 "013% ,01006

515 ,730 50966 1,00 -o49 ,Zq3 "o136 001035
516 ,7Z9 50952 lo00 002 0368 -o138 ,01018
517 0730 50949 lo00 *51 _%3q "o139 001017 "'"
518 ,?30 5,q_5 1,00 lo03 .510 ",140 00101_ :'" /'
519 0730 509%9 1o00 1053 050% 001_0 00101? _ ,. ,_
521 ,729 509_Z lo00 2,02 0657 °o138 001063 .
522 .729 5,9_0 1o00 2o53 0745 -01_q o01217 "I
523 .731 5.952 1.00 3004 0040 -01_2 .01580
b2_ o732 5,957 lo00 3052 0934 001_| 001116 e

|e i i e | | _,

Run 54 M = .730 _ = .001 _ = .003 .,1
m

i me

_26 .733 5.868 Z,O0 -1,00 0111 -,133 ,01013 |
527 ,730 508_0 2000 "0_8 028? "o135 001009
528 .731 5086* 2000 ,OZ 036% -0138 001006
52q ,732 5,867 Z,O0 o52 ,_55 ".13q 000999 /
_30 ,730 _,_63 2000 I,OZ o508 "0140 *01007 -i
531 .730 5.870 2.00 1.51 .551 "01_0 *01006 _!
532 ,730 5087_ 2o00 ZeOZ 065? "013q 0010_1 ,
533 .729 _,076 2,00 Z,52 0730 "0130 001179
_35 0729 508?1 2000 3002 0032 0,1_1 ,01_?
536 ,?_9 50077 2000 3o5_ ,92_ °o1%5 001_7

a

Run 58 M = .752 _= .001 _m = .002

570 .752 5098* 0*00 -2000 0059 "o131 001017
571 ,?5_ 50993 0,00 "oqq 0_1_ °o136 00100_
57_ ,75Z 5,q80 0,0C 00_ 0367 "011q 00090_
S73 .7_0 5.975 0000 050 _57 °o1%0 000995
574 07_1 50986 0o00 100Z 05_% "01%3 001005
575 *752 50990 0,00 105Z ,60% ",1%3 0010_7
576 o7_2 5o991 0000 ZoOZ 0?03 oo1%? 0011_5 ::
5?7 ,?gZ 5,_85 0,00 2o53 0795 "0151 001_31
5?8 .75Z 5.995 0.00 1o01 00q_ -o165 001qZ%
579 0751 _0980 0000 3o51 0q60 °o171 00_671

i
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T_J)LE 4.- Continued

(b) Continued

-6
Point M R x 10 r_bl a cn Cm Cd

Run 57 M = .767 O" = .001 O"m = .002

55" .766 6,014 0,00 "1,q9 *045 -.131 *01096 ,,
560 *769 6.025 0*00 -1.00 *Z09 -*136 *01041

561 .?67 6.019 0.00 .01 .368 -.142 .01029
562 .765 6.008 0.00 .51 .450 -.144 .01036
563 ,767 6._16 0*00 1.01 .529 -.145 *01036 +
565 ,766 5 )gO 0*00 1.49 .621 -*14| *01115 " !
566 .766 5.g94 0.00 2.02 .TZr -.157 .01381
96? ,766 5,975 0,00 2,51 ,807 -,166 ,0156|
56P .766 5,977 0,00 3,03 ,861 -,172 ,02490
569 .768 60033 0*00 3*53 .809 -0170 *03443

J ii f

Run 56 M = .767 O" = .001 O" = -.002

'

5,_ .764 5._68 1.0¢ -1,95 ,036 ",129 ,01071
549 ,766 5.975 1.90 -,9g .198 "*135 ,01043
550 .767 5.97_ 1.00 *00 *360 "*141 *01054
_52 .769 5.986 1.00 .51 .444 "*144 .01048
5_3 ,768 5,983 1.00 1,01 ,g25 ",145 .01053
_54 .767 5.978 1.00 1.5Z .611 *.146 .01011
555 ,?67 _,977 1,00 2,0Z .TOY -.153 ,01Z6Z
556 *767 5,966 1,00 2.51 ,789 -.16C .01670 _
557 .768 5*97Z 1.00 3,02 ,862 -,167 ,02336
558 .760 6.008 1.00 3*52 .913 ".16) *OZSS?

I

Run 55 M = .765 0"= .002 O'm " .003

537 ,764 5,898 Z,O0 -Z,00 ,025 -,127 ,011Zl
53m .763 5.900 2.00 -1.01 .194 *.135 .01092 +
_3q .764 50904 2.00 .02 0360 ".141 001072
540 .766 5.g10 Z.OG *Sl .441 ".144 *0|07|
541 .767 5.916 Z.00 1.01 *526 -.147 *a1093
_43 .766 S*912 Z.O0 1.53 .618 -.150 .01134
544 .?S_ 5.909 2.00 Z.OZ .704 -.153 .01306
_45 .764 5.910 Z.00 2.52 .786 -.160 .01610
_46 ,765 5.918 2.00 3.03 .853 ".167 *02160
547 .76g 5.g33 Z.O0 3._3 .918 -.170 .0Z970

|
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• TABLE 4.- Continued

(b) Continued

Point M R x 10 -6 _nbl (2 Cn Cm Cdp

i i i, m

Run 59 M - .782 O"..001 O"m - .002

580 ,781 50993 0,00 -2,02 0029 -o13Z 001176

581 0782 50999 0000 "090 o201 -,137 001083 /
58Z 0781 50990 0000 002 0371 -o144 ,OlOO?
583 ,781 5o996 OoO0 05Z .459 -o147 ,01000 I
58% .781 5.997 0,00 1,01 0346 -,i51 o01158
505 ,701 5,998 0000 ],51 0643 -o159 001415
586 o702 60002 OoO0 Z,03 07ZO -o160 ,01983 _*' i
507 ,?O] 60006 OoO0 2051 0765 0o170 002673 !/...
508 ,781, 5,998 0,00 3003 ,iX? °o170 009100 !

F 589 ,784 6,000 OoOO 3,53 ,012 -o16% o04Z06

t

Run 60 M = .732 O" = .001 O"m = -.002 i

590 ,734 15,0Z9 0,00 "1,99 ,1Z1 ",144 ,00913 !
' 59_. ,730 15,046 0000 -1,00 ,265 ",148 ,00900 ,

59Z o73Z 15o012 0000 0,%6 0339 -o149 000909 1
(J

593 0730 ].%.997 0.00 002 ,%10 "0150 000000 o
59% 0732 1,5,015 0,00 05]. 04?6 -,1,51, ,00002
595 0731 15.01,3 0000 IoOZ o556 -o152 000106
596 0731 14o985 O,OG 1052 0617 -o1,51, ,00900
5q8 .733 1,5o008 0.00 2000 o71,6 -0152 000906
599 0?33 150007 0,00 2052 ,007 -o1,5l 00113?

i 600 .733 .I.%,901 0o00 3004 egO? 00].50 o01,689
, 6GI 073% 150002 0000 3o51, 0995 "o167 032370
i,

i
; Run 48 M _ .731 (7" - .001 O" m - .001

%58 .731 t5.006 0,00 -1.00 ,1_6 -o1%0 000060
_"* %59 0732 ]._o966 0000 0049 o331, °o1,50 000066
_;_" _60 .730 1%09%1 0,00 003 0%05 0o151 000060
r _ 461 ,731 14,953 0000 054 0%79 oo151 ,00059 ;

%6Z 0?31 1,4_0969 0000 ].oO0 ,550 "o153 000071 i
_63 o?3Z !%o960 0000 105Z o631, -o151 ,00910

_* 46% .?30 1,4,9%4 0000 _003 ,716 -,15| o01,036

%65 ,731 1_,41 0,00 1051 ,0IS 0,154 001370 .
%66 o731 1,%o956 0000 300% 091T "o160 001085 i
%67 .730 1%o951 0,00 3.51 ,999 -o11'6 ,01510 !

J

i
i
J

. 38 "_
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L-79-2147.1

(a) Photograph. "_

Sidewall ORIGINALPAGE,IS
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Gaseousnitrogen I_
exhaust DigitalLI injection s.

_ .t valves(_ ,- Testsection L
"; Jl _ J J \ l_l Drivemotor7

ilI  -IU- .:,.,* . _ _ .._ ansection , I _ /_
'_-- IL _.......!._) - _ ...........'

_'.' _._2 -_-_ __- - i"'":"''_
j.

(b) Schematic.

,;_ Figure i.- Elevation view of Langley 0.3-Meter Transonic Cryogenic Tunnel 5
_._ with 20- by 60-cm (8- by 24-in.) two-dimensional test section installed

and with passive sidewall-boundary-layer removal system indicated.

" 40

. ORIGINAU PA_GEIS _ J

"J_ OFPoorQ_ C'_';4_"j

1988014350-(3,4:P



ORIGINALPAGE IS !

OF POOR QUALITY t

BLremoval
ducting

,!

L-82-210 •

(a) Top-view photograph with perforated plate for boundary-layer removal.
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(b) Schematic showing major components.

Figure 2.- Two-dimensiondl test section. 4
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(b) 0.75 -<M -<0.70.

Figure 10.- Concluded. i
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(b) 0.75 -<M -<0.78.

Figure ii.- Concluded.
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: Figure 14.- Spanwise drag of airfoil with free transition for

several Reynolds numbers at M - 0.600 and mbl = 0.
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Figure 19.- Concluded.
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Figure 71.- Effect of Reynolds number on variation of section
drag coefflczent with Mach number with no sidewall-boundary-
layer zemoval. (Solid symbols indicated fixed transition;
open symbols indicate free transition.)
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Figure 72.- Effect of sidewall-boundary-layer removaZ on _'_r_ _t.l.on of
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